Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Int J Pharm ; 654: 123994, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38484859

ABSTRACT

Small interfering RNA (siRNA) holds great potential to treat many difficult-to-treat diseases, but its delivery remains the central challenge. This study aimed at investigating the suitability of polymer-lipid hybrid nanomedicines (HNMeds) as novel siRNA delivery platforms for locoregional therapy of glioblastoma. Two HNMed formulations were developed from poly(lactic-co-glycolic acid) polymer and a cationic lipid: 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol). After characterization of the HNMeds, a model siRNA was complexed onto their surface to form HNMed/siRNA complexes. The physicochemical properties and siRNA binding ability of complexes were assessed over a range of nitrogen-to-phosphate (N/P) ratios to optimize the formulations. At the optimal N/P ratio of 10, complexes effectively bound siRNA and improved its protection from enzymatic degradation. Using the NIH3T3 mouse fibroblast cell line, DOTAP-based HNMeds were shown to possess higher cytocompatibility in vitro over the DC-Chol-based ones. As proof-of-concept, uptake and bioefficacy of formulations were also assessed in vitro on U87MG human glioblastoma cell line expressing luciferase gene. Complexes were able to deliver anti-luciferase siRNA and induce a remarkable suppression of gene expression. Noteworthy, the effect of DOTAP-based formulation was not only about three-times higher than DC-Chol-based one, but also comparable to lipofectamine model transfection reagent. These findings set the basis to exploit this nanosystem for silencing relevant GB-related genes in further in vitro and in vivo studies.


Subject(s)
Fatty Acids, Monounsaturated , Glioblastoma , Liposomes , Quaternary Ammonium Compounds , Mice , Animals , Humans , Liposomes/chemistry , Polymers/chemistry , RNA, Small Interfering , Glioblastoma/genetics , Glioblastoma/therapy , NIH 3T3 Cells , Nanomedicine , Lipids/chemistry
2.
Sci Rep ; 13(1): 13357, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587232

ABSTRACT

Training with long inter-session intervals, termed distributed training, has long been known to be superior to training with short intervals, termed massed training. In the present study we compared c-Fos expression after massed and distributed training protocols in the Morris water maze to outline possible differences in the learning-induced pattern of neural activation in the dorsal CA1 in the two training conditions. The results demonstrate that training and time lags between learning opportunities had an impact on the pattern of neuronal activity in the dorsal CA1. Mice trained with the distributed protocol showed sustained neuronal activity in the postero-distal component of the dorsal CA1. In parallel, in trained mice we found more active cells that tended to constitute spatially restricted clusters, whose degree increased with the increase in the time lags between learning trials. Moreover, activated cell assemblies demonstrated increased stability in their spatial organization after distributed as compared to massed training or control condition. Finally, using a machine learning algorithm we found that differences in the number of c-Fos positive cells and their location in the dorsal CA1 could be predictive of the training protocol used. These results suggest that the topographic organization and the spatial location of learning activated cell assemblies might be critical to promote the increased stability of the memory trace induced by distributed training.


Subject(s)
Algorithms , Hippocampus , Animals , Mice , Cell Cycle , Machine Learning , Molecular Weight , Proto-Oncogene Proteins c-fos
3.
J Pers Med ; 13(6)2023 May 27.
Article in English | MEDLINE | ID: mdl-37373891

ABSTRACT

Fibromyalgia syndrome (FS) is a disorder characterized by widespread musculoskeletal pain and psychopathological symptoms, often associated with central pain modulation failure and dysfunctional adaptive responses to environmental stress. The Radio Electric Asymmetric Conveyer (REAC) technology is a neuromodulation technology. The aim of this study was to evaluate the effects of some REAC treatments on psychomotor responses and quality of life in 37 patients with FS. Tests were conducted before and after a single session of Neuro Postural Optimization and after a cycle of 18 sessions of Neuro Psycho Physical Optimization (NPPO), using evaluation of the functional dysmetria (FD) phenomenon, Sitting and Standing (SS), Time Up and Go (TUG) tests for motor evaluation, Fibromyalgia Impact Questionnaire (FIQ) for quality of life. The data were statistically analyzed, and the results showed a statistically significant improvement in motor response and quality of life parameters, including pain, as well as reduced FD measures in all participants. The study concludes that the neurobiological balance established by the REAC therapeutic protocols NPO and NPPO improved the dysfunctional adaptive state caused by environmental and exposomal stress in FS patients, leading to an improvement in psychomotor responses and quality of life. The findings suggest that REAC treatments could be an effective approach for FS patients, reducing the excessive use of analgesic drugs and improving daily activities.

4.
J Pers Med ; 13(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37240963

ABSTRACT

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that affects communication, social interaction, and behavior. Non-invasive neuromodulation techniques, such as radioelectric asymmetric conveyer (REAC) technology, have gained attention for their potential to improve the endogenous bioelectric activity (EBA) and neurobiological processes underlying ASD. Neuro Postural Optimization (NPO) and Neuro Psycho Physical Optimization (NPPO) treatments are non-invasive and painless neuromodulation treatments that utilize REAC technology and have shown promising results in improving the symptoms of ASD. This study aimed to evaluate the effects of NPO and NPPO treatments on functional abilities in children and adolescents with ASD using the Pediatric Evaluation of Disability Inventory-Computer Adaptive Test (PEDI-CAT). The study consisted of 27 children and adolescents with ASD who underwent a single session of NPO followed by 18 sessions of NPPO treatment over a period of one week. The results showed significant improvements in the children's and adolescents' functional abilities across all domains of the PEDI-CAT. These findings suggest that NPO and NPPO may be effective treatments for improving functional abilities in children and adolescents with ASD.

5.
J Neurochem ; 165(3): 318-333, 2023 05.
Article in English | MEDLINE | ID: mdl-36583243

ABSTRACT

Neuron generation persists throughout life in the hippocampus but is altered in animal models of neurological and neuropsychiatric diseases, suggesting that disease-associated decline in cognitive and emotional hippocampal-dependent behaviours might be functionally linked with dysregulation of postnatal neurogenesis. Depletion of the adult neural stem/progenitor cell (NSPCs) pool and neurogenic decline have been recently described in mice expressing synaptic susceptibility genes associated with autism spectrum disorder (ASDs). To gain further insight into mechanisms regulating neurogenesis in mice carrying mutations in synaptic genes related to monogenic ASDs, we used the R451C Neuroligin3 knock-in (Nlgn3 KI) mouse, which is characterized by structural brain abnormalities, deficits in synaptic functions and reduced sociability. We show that the number of adult-born neurons, but not the size of the NSPC pool, was reduced in the ventral dentate gyrus in knock-in mice. Notably, this neurogenic decline was rescued by daily injecting mice with 10 mg/Kg of the antidepressant fluoxetine for 20 consecutive days. Sustained treatment also improved KI mice's sociability and increased the number of c-Fos active adult-born neurons, compared with vehicle-injected KI mice. Our study uncovers neurogenesis-mediated alterations in the brain of R451C KI mouse, showing that the R451C Nlgn3 mutation leads to lasting, albeit pharmacologically reversible, changes in the brain, affecting neuron formation in the adult hippocampus. Our results suggest that fluoxetine can ameliorate social behaviour in KI mice, at least in part, by rescuing adult hippocampal neurogenesis, which may be relevant for the pharmacological treatment of ASDs.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Mice , Animals , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Autistic Disorder/genetics , Antidepressive Agents/pharmacology , Hippocampus , Neurogenesis/physiology , Disease Models, Animal , Social Behavior
6.
Adv Neurodev Disord ; 7(2): 244-251, 2023.
Article in English | MEDLINE | ID: mdl-36213521

ABSTRACT

Objectives: Autism spectrum disorder (ASD) symptoms can become more evident because of different factors. Among these, depression, anxiety, and stress play an important role. Additionally, several studies have revealed the impact of the COVID-19 pandemic on participants with ASD. In previous studies, two noninvasive neurobiological stimulation treatments with radio electric asymmetric conveyer (REAC) technology, called neuropostural optimization (NPO) and neuropsychophysical optimization (NPPO), were shown to be effective in improving the subjective response to environmental stressors in the general population and in ASD population. Based on the proven efficacy of REAC NPO and NPPOs treatments in alleviating anxiety, stress, and depression, the purpose of this study is to verify how these treatments can reduce the severity of ASD symptoms expression, which is aggravated by depression, anxiety, and stress. The treatments' effects were perceived by caregivers and assessed by the Autism Treatment Evaluation Checklist (ATEC). Methods: This study involved 46 children with a previous diagnosis of ASD made using the Autism Diagnostic Observation Schedule and Autism Diagnostic Interview-Revised. The participants received one session of NPO treatment and one NPPOs treatment cycle of 18 sessions, administered within approximately 3 weeks. The Autism Treatment Evaluation Checklist (ATEC) was used to evaluate the efficacy of the REAC treatments. ATEC allows to evaluate four clusters (speech or language communication; sociability; sensory or cognitive awareness; and health/physical/behavior) through a numerical scale that measures increasing levels of ASD severity. Results: The comparison between the scores of the ATEC administered pre- and post-REAC treatments highlighted an improvement of ASD symptoms in each of the four clusters of ATEC. Conclusions: The results confirm the usefulness of REAC treatments to optimize the individual response to environmental stressors and reduce the symptomatic expression and deficits present in ASD.

7.
Biomedicines ; 10(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36428520

ABSTRACT

All cells are capable of secreting extracellular vesicles (EVs), which are not a means to eliminate unneeded cellular compounds but represent a process to exchange material (nucleic acids, lipids and proteins) between different cells. This also happens in the brain, where EVs permit the crosstalk between neuronal and non-neuronal cells, functional to homeostatic processes or cellular responses to pathological stimuli. In brain tumors, EVs are responsible for the bidirectional crosstalk between glioblastoma cells and healthy cells, and among them, astrocytes, that assume a pro-tumoral or antitumoral role depending on the stage of the tumor progression. In this work, we show that astrocyte-derived small EVs (sEVs) exert a defensive mechanism against tumor cell growth and invasion. The effect is mediated by astrocyte-derived EVs (ADEVs) through the transfer to tumor cells of factors that hinder glioma growth. We identified one of these factors, enriched in ADEVs, that is miR124. It reduced both the expression and function of the volume-regulated anion channel (VRAC), that, in turn, decreased the cell migration and invasion of murine glioma GL261 cells.

8.
Cureus ; 14(8): e28159, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35999998

ABSTRACT

Flail arm syndrome (FAS) is a variant of amyotrophic lateral sclerosis (ALS) that manifests itself with the progressive loss of motor control of the upper limbs starting from the proximal part. Both electrophysiological and magnetic resonance studies have shown that functional alterations in the subcortical structures, cerebellum, and cortex are present in this pathology. These alterations appear to play a significant component in determining cognitive, motor, and behavioral effects. To try to modulate these alterations, in this case report, we used three noninvasive and specific neuromodulation treatments of the Radio Electric Asymmetric Conveyer (REAC) technology. The Neuro Postural Optimization (NPO), the Neuro Psycho Physical Optimization (NPPO), and the Neuro Psycho Physical Optimization Cervico-Brachial (NPPO-CB) with the aim of improving motor control, depression, anxiety, and stress. At the end of the treatment cycle that lasted five consecutive days, the patient regained the ability to raise his arms, a capacity he had lost for several months. This case demonstrates that REAC neurobiological modulation treatments aimed at improving dysfunctional neuropsychomotor behavior (DNPMB) can be useful in highlighting and reducing these components, allowing for better evaluation of the real neurodegenerative damage and determination of a better quality of life for these patients.

9.
Cureus ; 14(7): e26550, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35815301

ABSTRACT

Background The deviation from perfect bilateral symmetry is defined as fluctuating asymmetry (FA) and is a common phenomenon among living organisms. This deviation from perfection is thought to reflect the environmental pressures experienced during development and, therefore, the FA represents an epigenetic measure of the environmental stress, which affects all living beings from conception, progressively affecting all aspects of life. Rinaldi and Fontani hypothesized that the FA morpho-functional changes are originated by an adaptive motor behavior determined by functional alterations in the cerebellum and neural circuits, not caused by a lesion, but induced by the experienced environmental stress. They identified in the asymmetric activation of symmetrical muscle groups, detectable even in healthy subjects, the expression of the dysfunctional adaptation state of the subject and named this clinical semeiotic phenomenon functional dysmetria (FD). On these premises, they developed the radio electric asymmetric conveyer (REAC) technology, a neuromodulation technology aimed at optimizing the best neuro-psycho-motor strategies in relation to environmental interaction. Neuro postural optimization (NPO) is a neurobiological stimulation treatment administered with the REAC technology and it has been specifically studied to treat the state of dysfunctional adaptation that is revealed through the presence of FD. Aim The purpose of this study was to verify whether a single administration of the REAC NPO treatment can trigger the improvement of the capacity of stress management and the quality of life in a population of children housed in a group home in Macapá, Brazil. Materials and methods The sample of this study consisted of nine children (six boys and three girls) in the age group of 6-11 years, which represented the totality of the children present in the structure. The children was investigated for the assessment of the presence of functional dysmetria and with the Pediatric Quality of Life Inventory TM 4.0 (PedsQL) before and one week after the administration of the REAC NPO. Results The stable disappearance of FD was found in all children at follow-up. In addition, improvements were found in stress management and quality of life, in the physical, emotional, social, and scholastic aspects evaluated with PedsQL. Conclusions It was seen that the REAC NPO neurobiological modulation treatment induced the stable disappearance of FD and triggered the initial improvement of neurophysical aspects also in a population of children housed in a group home in the Amazon region of Macapá, Brazil.

10.
Cureus ; 14(7): e26770, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35836712

ABSTRACT

Calcific tendinitis of the shoulder (CTS) is one of the pathological conditions that most often affects the shoulder and consists of a calcium deposit that settles within the tendon tissue of the rotator cuff. The scientific literature has long highlighted the impact of anxiety, stress, and depression on CTS. The goal of this case report is to highlight how the emotional state of patients and their neuro-psychomotor behavior induce a state of constant muscular tension which, through the physical phenomenon of piezoelectricity, causes calcium salts to precipitate and form calcifications. Therefore, stress, anxiety, and depression are likely factors underlying the etiopathogenesis of CTS. Consistent with this interpretation, this report presents five cases of CTS treated with three specific neurobiological stimulation treatments using the radioelectric asymmetric conveyer (REAC) technology, which has demonstrated its effectiveness on alterations in postural attitude intended as neuro-psychomotor behavior, anxiety, stress, and depression, as well as on autonomic and metabolic alterations of the tissues at a local level. The results presented suggest that this approach may be useful in the treatment and prevention of CTS.

11.
Pharmaceutics ; 14(7)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35890345

ABSTRACT

Glioblastoma Multiforme (GBM) is a devastating disease with a low survival rate and few efficacious treatment options. The fast growth, late diagnostics, and off-target toxicity of currently used drugs represent major barriers that need to be overcome to provide a viable cure. Nanomedicines (NMeds) offer a way to overcome these pitfalls by protecting and loading drugs, increasing blood half-life, and being targetable with specific ligands on their surface. In this study, the FDA-approved polymer poly (lactic-co-glycolic) acid was used to optimise NMeds that were surface modified with a series of potential GBM-specific ligands. The NMeds were fully characterised for their physical and chemical properties, and then in vitro testing was performed to evaluate cell uptake and GBM cell specificity. While all targeted NMeds showed improved uptake, only those decorated with the-cell surface vimentin antibody M08 showed specificity for GBM over healthy cells. Finally, the most promising targeted NMed candidate was loaded with the well-known chemotherapeutic, paclitaxel, to confirm targeting and therapeutic effects in C6 GBM cells. These results demonstrate the importance of using well-optimised NMeds targeted with novel ligands to advance delivery and pharmaceutical effects against diseased cells while minimising the risk for nearby healthy cells.

12.
Cureus ; 14(6): e25768, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35706441

ABSTRACT

Background Fluctuating asymmetry (FA) is widely defined as the deviation from perfect bilateral symmetry and is considered an epigenetic measure of environmental stress. Rinaldi and Fontani hypothesized that the FA morpho-functional changes originate from an adaptive motor behavior determined by functional alterations in the cerebellum and neural circuits, not caused by a lesion, but induced by environmental stress. They called this phenomenon functional dysmetria (FD). On this premise, they developed the radio electric asymmetric conveyer (REAC) technology, a neuromodulation technology aimed at optimizing the best neuro-psycho-motor strategies in relation to environmental interaction. Aims Previous studies showed that specific REAC neuro postural optimization (NPO) treatment can induce stable FD recovery. This study aimed to verify the duration of the NPO effect in inducing the stable FD recovery over time. Materials and methods Data were retrospectively collected from a population of 29,794 subjects who underwent a specific semiological FD assessment and received the NPO treatment, regardless of the pathology referred. Results The analysis of the data collected by the various participants in the study led us to ascertain the disappearance of FD in 100% of the cases treated, with a stability of the result detected up to 18 years after the single administration of the REAC NPO treatment. Conclusions The REAC NPO neurobiological modulation treatment consisting of a single administration surprisingly maintains a very long efficacy in the correction of FD. This effect can be explained as the long-lasting capacity of the NPO treatment to induce greater functional efficiency of the brain dynamics as proven in previous studies.

13.
Proc Natl Acad Sci U S A ; 119(14): e2120717119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35349340

ABSTRACT

SignificanceDistributed training has long been known to lead to more robust memory formation as compared to massed training. Using the water maze, a well-established task for assessing memory in laboratory rodents, we found that distributed and massed training differentially engage the dorsolateral and dorsomedial striatum, and optogenetic priming of dorsolateral striatum can artificially increase the robustness of massed training to the level of distributed training. Overall, our findings demonstrate that spatial memory consolidation engages different neural substrates depending on the training regimen, identifying a therapeutic avenue for memory enhancement.


Subject(s)
Memory Consolidation , Spatial Memory , Corpus Striatum , Hippocampus , Maze Learning , Neostriatum
14.
Polymers (Basel) ; 14(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35215600

ABSTRACT

Reactive oxygen species (ROS)-sensitive drug delivery systems (DDS) specifically responding to altered levels of ROS in the pathological microenvironment have emerged as an effective means to enhance the pharmaceutical efficacy of conventional nanomedicines, while simultaneously reducing side effects. In particular, the use of the biocompatible, biodegradable, and non-toxic ROS-responsive thioketal (TK) functional group in the design of smart DDS has grown exponentially in recent years. In the design of TK-based DDS, different technological uses of TK have been proposed to overcome the major limitations of conventional DDS counterparts including uncontrolled drug release and off-target effects. This review will focus on the different technological uses of TK-based biomaterials in smart nanomedicines by using it as a linker to connect a drug on the surface of nanoparticles, form prodrugs, as a core component of the DDS to directly control its structure, to control the opening of drug-releasing gates or to change the conformation of the nano-systems. A comprehensive view of the various uses of TK may allow researchers to exploit this reactive linker more consciously while designing nanomedicines to be more effective with improved disease-targeting ability, providing novel therapeutic opportunities in the treatment of many diseases.

15.
Nanomaterials (Basel) ; 11(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34835710

ABSTRACT

Enzymes, as natural and potentially long-term treatment options, have become one of the most sought-after pharmaceutical molecules to be delivered with nanoparticles (NPs); however, their instability during formulation often leads to underwhelming results. Various molecules, including the Tween® polysorbate series, have demonstrated enzyme activity protection but are often used uncontrolled without optimization. Here, poly(lactic-co-glycolic) acid (PLGA) NPs loaded with ß-glucosidase (ß-Glu) solutions containing Tween® 20, 60, or 80 were compared. Mixing the enzyme with Tween® pre-formulation had no effect on particle size or physical characteristics, but increased the amount of enzyme loaded. More importantly, NPs made with Tween® 20:enzyme solutions maintained significantly higher enzyme activity. Therefore, Tween® 20:enzyme solutions ranging from 60:1 to 2419:1 mol:mol were further analyzed. Isothermal titration calorimetry analysis demonstrated low affinity and unquantifiable binding between Tween® 20 and ß-Glu. Incorporating these solutions in NPs showed no effect on size, zeta potential, or morphology. The amount of enzyme and Tween® 20 in the NPs was constant for all samples, but a trend towards higher activity with higher molar rapports of Tween® 20:ß-Glu was observed. Finally, a burst release from NPs in the first hour with Tween®:ß-Glu solutions was the same as free enzyme, but the enzyme remained active longer in solution. These results highlight the importance of stabilizers during NP formulation and how optimizing their use to stabilize an enzyme can help researchers design more efficient and effective enzyme loaded NPs.

16.
Pharmaceutics ; 13(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34575571

ABSTRACT

Microfluidic technologies have recently been applied as innovative methods for the production of a variety of nanomedicines (NMeds), demonstrating their potential on a global scale. The capacity to precisely control variables, such as the flow rate ratio, temperature, total flow rate, etc., allows for greater tunability of the NMed systems that are more standardized and automated than the ones obtained by well-known benchtop protocols. However, it is a crucial aspect to be able to obtain NMeds with the same characteristics of the previously optimized ones. In this study, we focused on the transfer of a production protocol for hybrid NMeds (H-NMeds) consisting of PLGA, Cholesterol, and Pluronic® F68 from a benchtop nanoprecipitation method to a microfluidic device. For this aim, we modified parameters such as the flow rate ratio, the concentration of core materials in the organic phase, and the ratio between PLGA and Cholesterol in the feeding organic phase. Outputs analysed were the chemico-physical properties, such as size, PDI, and surface charge, the composition in terms of %Cholesterol and residual %Pluronic® F68, their stability to lyophilization, and the morphology via atomic force and electron microscopy. On the basis of the results, even if microfluidic technology is one of the unique procedures to obtain industrial production of NMeds, we demonstrated that the translation from a benchtop method to a microfluidic one is not a simple transfer of already established parameters, with several variables to be taken into account and to be optimized.

17.
Sci Data ; 7(1): 437, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33328476

ABSTRACT

Stressful experiences are part of everyday life and animals have evolved physiological and behavioral responses aimed at coping with stress and maintaining homeostasis. However, repeated or intense stress can induce maladaptive reactions leading to behavioral disorders. Adaptations in the brain, mediated by changes in gene expression, have a crucial role in the stress response. Recent years have seen a tremendous increase in studies on the transcriptional effects of stress. The input raw data are freely available from public repositories and represent a wealth of information for further global and integrative retrospective analyses. We downloaded from the Sequence Read Archive 751 samples (SRA-experiments), from 18 independent BioProjects studying the effects of different stressors on the brain transcriptome in mice. We performed a massive bioinformatics re-analysis applying a single, standardized pipeline for computing differential gene expression. This data mining allowed the identification of novel candidate stress-related genes and specific signatures associated with different stress conditions. The large amount of computational results produced was systematized in the interactive "Stress Mice Portal".


Subject(s)
Brain/physiology , Gene Expression , Stress, Physiological , Stress, Psychological , Transcriptome , Animals , Computational Biology , Data Mining , Datasets as Topic , Female , Male , Mice
18.
Psychol Res Behav Manag ; 13: 1247-1256, 2020.
Article in English | MEDLINE | ID: mdl-33376420

ABSTRACT

INTRODUCTION: The purpose of this retrospective study was to compare the effects of two different modalities of administration of the neuro psycho physical optimization (NPPO) neuromodulation treatment, applied with radio electric asymmetric conveyer (REAC) biotechnology devices. Both the modalities are aimed at improving the strategies to deal with and optimize the allostatic response to environmental stressors and exposome. This allows to reduce the dysfunctional adaptive behavior patterns, which underlie many neuropsychological symptoms and pathologies, and to improve the symptoms of depression, anxiety and stress. MATERIALS AND METHODS: From a population of subjects experiencing at least two of the three symptoms depression, anxiety and stress, the selection of pre and post-treatment Depression, Anxiety, Stress 21 items scale (DASS 21) data was made proceeding with a reverse chronological recruitment mechanism, until reaching 150 subjects for each of the 2 groups. The first group was treated with the neuro psycho physical optimization treatment (NPPO), which is the punctiform modality of administration on the auricle pavilion, and the second group was treated with the neuro psycho physical optimization treatment, which is the area modality of administration applied by the planar probe on the cervicobrachial area (NPPO-CB). RESULTS: The Wilcoxon signs test confirmed the differences in scores in pre and post-treatment DASS-21. The comparison between the two groups data and the comparison across groups data showed that NPPO and NPPO-CB have the same efficacy in reducing the symptoms of depression, anxiety and stress, after a single treatment cycle. Statistical significance was set at p <0.05. DISCUSSION: This is the first efficacy descriptive comparison between the two different modalities of administration of the NPPO treatment, as different options for the same clinical indication.

19.
Psychol Res Behav Manag ; 13: 929-937, 2020.
Article in English | MEDLINE | ID: mdl-33204186

ABSTRACT

INTRODUCTION: In addition to the effects of coronavirus infection, the Covid-19 pandemic has induced widespread psychosocial distress, which has triggered the onset of anxious and depressive states, reactive to the socio-relational and economic situation induced by the pandemic. Some of our participants showed depressive and anxious attitudes even in the absence of real pictures of depression and anxiety. This phenomenon, combined with mechanisms of emulation and conditioning, can trigger a vicious cycle within interpersonal relationships and promote the administration of unnecessary treatments. Various approaches have been proposed to help populations suffering from psychosocial problems induced by the Covid-19 pandemic, but there is an objective difficulty in treating a large population. METHODS: To contain and reduce this widespread psychosocial unease, in this study we used two radio electric asymmetric conveyer (REAC) technology neuromodulation treatments, neuro postural optimization (NPO) and neuropsychophysical optimization-cervicobrachial (NPPO-CB), aimed at optimizing an individual's response to the effects of environmental stressors. These treatments are quick and easy to administer; therefore, they can be administered to a large cohort of participants in a short time. To evaluate the effects of the REAC NPO and NPPO-CB treatments, the DASS-21 psychometric test was used because it has already been used to test depression, anxiety, and stress during the Covid-19 pandemic. RESULTS: The results of the study confirm the usefulness of REAC NPO and NPPO-CB treatments in helping participants to have better coping strategies for the environmental pressures and reduce the neuropsychological and behavioral effects induced by the Covid-19 pandemic. DISCUSSION: The results obtained in this study are consistent with previous clinical studies confirming the usefulness of the treatments to face neuropsychological and behavioral effects induced by exposome pressure.

20.
Sci Rep ; 10(1): 11338, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647258

ABSTRACT

Goal-directed navigation can be based on world-centered (allocentric) or body-centered (egocentric) representations of the environment, mediated by a wide network of interconnected brain regions, including hippocampus, striatum and prefrontal cortex. The relative contribution of these regions to navigation from novel or familiar routes, that demand a different degree of flexibility in the use of the stored spatial representations, has not been completely explored. To address this issue, we trained mice to find a reward relying on allocentric or egocentric information, in a modified version of the cross-maze task. Then we used Zif268 expression to map brain activation when well-trained mice were required to find the goal from a novel or familiar location. Successful navigation was correlated with the activation of CA1, posterior-dorsomedial striatum, nucleus accumbens core and infralimbic cortex when allocentric-trained mice needed to use a novel route. Allocentric navigation from a familiar route activated dorsomedial striatum, nucleus accumbens, prelimbic and infralimbic cortex. None of the structures analyzed was significantly activated in egocentric-trained mice, irrespective of the starting position. These data suggest that a flexible use of stored allocentric information, that allows goal finding even from a location never explored during training, induces a shift from fronto-striatal to hippocampal circuits.


Subject(s)
Brain/physiology , Nerve Net , Orientation, Spatial , Spatial Learning , Spatial Memory , Spatial Navigation , Animals , Male , Mice , Space Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...